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A Possible Explanation for Foreland Thrust Propagation

JOHN PANIAN AND WALTER PILANT

Department of Geology and Planetary Sciences, University of Pittsburgh, Pennsylvania

A common feature of thin-skinned fold and thrust belts is the sequential nature of foreland directed thrust
systems. As a rule, younger thrusts develop in the footwalls of older thrusts, the whole sequence propagating
towards the foreland in the transport direction. As each new younger thrust develops, the entire sequence
is thickened; particularly in the frontal region. The compressive toe region can be likened to an advancing
wave; as the mountainous thrust belt advanced the down- surface slope stresses drive thrusts ahead of it
much like a surfboard rider. In an attempt to investigate the stresses in the frontal regions of thrustsheets, a
numerical method has been devised from the algorithm given by McTigue and Mei [1981]. The algorithm
yields a quickly computed approximate solution of the gravity- and tectonic-induced stresses of a two-
dimensional homogeneous elastic half-space with an arbitrarily shaped free surface of small slope. A
comparison of the numerical method with analytical examples shows excellent agreement. The numerical
method was devised because it greatly facilitates the stress calculations and frees one from using the
restrictive, simple topographic profiles necessary to obtain an analytical solution. The numerical version of
the McTigue and Mei algorithm shows that there is a region of increased maximum resolved shear
stress, 7, directly beneath the toe of the overthrust sheet Utilizing the Mohr-Coulomb failure criterion,
predicted fault lines are computed. It is shown that they flatten and become horizontal in some portions of
this zone of increased 1. Thrust sheets are known to advance upon weak decollement zones. If there is a
coincidence of increased 7, a weak rock layer, and a potential fault line parallel to this weak layer, we have
in place all the elements necessary to initiate a new thrusting event. That is, this combination acts as a
nucleating center to initiate 2 new thrusting event. Therefore, thrusts develop in sequence towards the
foreland as a consequence of the stress concentrating abilities of the toe of the thrust sheet. The gravity-
and tectonic-induced stresses due to the surface topography (usually ignored in previous analyses) of an

advancing thrust sheet play a key role in the nature of shallow foreland thrust propagation.

INTRODUCTION

Chapple [1978] has listed 4 characteristics that are
fundamental to any thin-skinned fold-and-thrust belt; (1)
they are thin-skinned; i.e., folding and faulting occur in the
stratigraphic section at some level above the basement
rocks, (2) the thin-skinned belt is bounded by a basal layer
composed of particularly weak rock or a zone of high pore
fluid pressure, (3) the belt before and after deformation is
wedged shaped, (4) the whole wedge has been
systematically shortened and thickened. In his classic
study of the eastern margin of the Canadian Rocky
Mountains, Dahlstrom [1970] gives two geometric rules
concerning thrust systems that can be generally applied to
any foreland fold-and-thrust belt; (1) thrusts cut up-section
in the direction of tectonic transport, (2) thrusts tend to be
parallel to bedding in weak, incompetent layers and oblique
to stronger, more competent ones.

Individual thrusts can join into a thrust system forming
either an imbricate fan or a duplex [Boyer and Elliott,
1982]. In an imbricate fan, each thrust has an asymptotic
shape that curves downward to a common basal sole thrust
(see Figure la). Should a series of imbricate slices be
bounded on the top by the original thrust surface, the
structure is termed a duplex (see Figure 1b). On the basis
of stratigraphic and geometric evidence, Elliott [1980,
p.187] is led to state that

Thrusts develop in sequence toward the foreland...Each
individual thrust moves into place and thickens the section,
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particularly in its imbricate frontal region; then this entire
mass moves on a newer and lower fracture surface, with the
imbrications now incorporated into a larger thrust sheet.

This sequential nature of foreland thrusting, i.e., thrusts
generally propagating outward from the hinterland towards
the foreland, has been documented by many authors; Bally
et.al. [1966] and Dahlstrom [1970] for the Canadian
Rockies, and Armstrong and Oriel [1965] for the
Idaho-Wyoming thrust belt are some of the more common
studies cited in the literature. (There are exceptions, of
course, such as overstep thrust sequences [Boyer and
Elliott, 1982], but it is our understanding that these are the
exceptions and not the rule [see Butler, 1982, p.241].) A
satisfactory explanation for this sequential, systematic
development of foreland thrust systems has not been
presented.

Davis et.al. [1983] present a model in which the overall
mechanics of fold-and-thrust belts are analagous to a wedge
of soil or snow in front of a moving bulldozer. However,
they do not provide an explanation as to how individual
thrusts are systematically developed at the toe. Mandl and
Shippam [1981] provide a scenario in which they predict
imbrication in a thrust sheet in terms of areas of high
critical strength values in the sheet. But, as mentioned
before, they neglect any topography that may be produced
by the successive imbrication of the sheet. Thus, their
original stress field distributions cannot be applied to
subsequent imbrications as they attempt to do in their
model.

There are several recent studies dealing with the forces
necessary for thrust sheet emplacement; whether
gravitational or longitudinal compressive forces are the
dominant cause. For the frontal portions of thrust sheets,
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Fig. 1. (a) Illustration of an imbricate fan. Faulting proceeded from right to left. (b) Illustration of a duplex. Faulting

proceeded from right to left.

longitudinal compressive forces are clearly important
[Elliott 1976b, 1980]. These forces may be the result of a
'push' applied in the hinterland [Chapple, 1981; Davis
et.al., 1983] or from the gravitational 'spreading’ of the
mountainous mass [Elliott, 1976a].

THE EFFECTS OF TOPOGRAPHIC RELIEF

Topography is an important element in any analysis of
stress distribution in the upper crust [Elliott, 1976a]. The
usual calculations for the effect of topographic relief rely
on a zeroth order approximation which says that the
normal stress component at the surface (y = 0) of a half
space is related to the topographic loading and that the
tangential stress component is zero. Clearly, these are not
the relevant equations. One must find a solution which
allows the vanishing of the stresses upon the topographic
surface, A(x), itself . Previous analyses dealing with stress
distributions and subsequent prediction of thrust faulting
have been unsatisfactory since the gravitational spreading
of a topographic load produces significant shear tractions
and cannot be ignored. For example, Hafner’s [1951]
analysis, which is often cited in the literature, and Mandl

and Shippam’s [1981], both ignore the presence of any
surface slope. It is unrealistic to do so.

An analytical solution to gravitationally induced stresses
in the presence of topographic irregularities has been given
by Savage, Swolfs, and Powers [1985] and a similar
solution for the stress concentration due to the stress
concentrating abilities of topographic discontinuities was
given shortly thereafter by Savage and Swolfs [1986].
These particular forms of solution (obtained by conformal
mapping) have as a significant advantage, exactness. They
have as a disadvantage that there are only a small number
of analytical types of topography subject to easy
conformal transformation. Somewhat earlier, McTigue and
Mei [1981] had provided a (first order) approximation to
the exact solution which is useful when topographic slopes
are small. This algorithm also suffers from the need to
have topographic representations which are sufficiently
simple to be amenable to the evaluation of Hilbert
transforms related to functions of this topography.
However, their algorithm has a major advantage in that it
can be evaluated numerically (with insignificant loss of
accuracy). This means that one can calculate stress values
in the case of arbitrary (subject to the small slope
limitation) topographic surface representations. This is the
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major reason for the use of this approximate algorithm. As
with most first order approximations, there is difficulty in
obtaining a measure of its accuracy. We shall say more
about this later.

Not only did these three papers show that shear tractions
could not be ignored in the case of topographically induced
stresses and stress concentrations, but the McTigue and Mei
[1981] paper also showed that accurate results may not
agree with commonly accepted knowledge. For example,
they found that in the case of a ridge, there was horizontal
compression near the crest and that in the case of a valley,
there would be tension at the bottom. These first order
results were confirmed by Savage, Swolfs, and Powers
[1985] using an exact solution.

One can make a model (in light of their results) to
suggest why this might be so. In Figure 2a, it is clear that
the force of gravity acting on the slope materials would
induce tensile stresses at the top of a ridge. On further
consideration, we see that the bending moment induced by
flattening will induce the opposite, i.e., compressive
forces. At this point intuition fails us. Which will win
out? The paper cited tells us that the bending moment is
more important. Similarly, with the bending moment
created in the valley case, the bottom will thus be in a
state of tension (Figure 2b).

An analytical approximation

Utilizing the observation that a wide variety of
topographic features are characterized by small slopes,
McTigue and Mei [1981] have employed a perturbation
scheme to obtain integral representations (accurate to first
order) for the stresses in the near surface vicinity in a
region with topographic relief. Their analysis assumes a
two-dimensional homogeneous elastic half-space with an
arbitrarily shaped free surface. A Cartesian coordinate
system is defined with y, the vertical axis, taken as
positive upwards and x, the horizontal axis, increasing

positively to the right. Stress, Sij is normalized by pgH,

where p = density, g = the acceleration of gravity, and H =
the characteristic height of the topography. The
coordinates are made dimensionless by normalizing x and y
by L, the characteristic length of the topography. The
characteristic slope of the topography is thus defined as € =
H/L with the requirement that H/L<<1. Figure 3 illustrates
the coordinate system utilized. Their results can be written

compression
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as (M&M followed by a number refer to equations found in
McTigue and Mei [1981]:
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h and h2 are the Fourier transforms of h(x) and [h(x)]2,
respectively. The effect of the distributed shear is
represented by terms quadratic in 4 and the distributed
normal load is represented by terms multiplied by y.

As noted in the introduction, longitudinal compressive
forces must also be considered. McTigue and Mei [1981]
continued their analysis to allow for the superposition of a
uniform far-field tectonic compression (or tension) on the
gravitationally induced stress field. Their results giving
the stresses related to a far-field tectonic stress are:
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where R is the ratio of the tectonic stress to the

gravitational stress (R = 0. /pgH); R > 0 for regional

Fig. 2. Competing factors, gravitational sliding and bending moments, in ridge and valley. In both cases, the bending
moment is more influential and leads to compression at the top of the ridge and tension in the valley bottom.
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Fig. 3. Coordinate system and parameters used in stress calculations.

tension and R < O for regional compressional. To obtain
both the stresses due to the gravitational body force and
the tectonic force, one simply adds M&M (18, 22, 23) to
M&M (52, 54). This set of equations allows the
representation of the complete distribution for the leading
edge of a thrust sheet.

A numerical implementation

To evaluate these expressions for a given function A(x),
one must obtain the necessary transforms and inverse
transforms appearing in these equations. This can be done
for a few simple topographies [several examples appear in
McTigue and Mei, 1981] but the analytical expressions
they obtained are not amenable to the insertion of
arbitrarily prescribed topographic relief. This limitation
can be removed by making a numerical implementation of
the analytical results. The rapid evaluations of transforms
and related quantities can be affected by the use of the Fast
Fourier Transform (FFT) using a discretization fine enough
to remove discernable differences between analytical and
numerical results.

The computation of M&M (18) for the vertical stress

component, is straightforward; simply subtract the

)

¥y
topographic height from the vertical height at the
corresponding horizontal distance. Taken over a grid of

points in the x and y directions, a two dimensional
The FFT is utilized in

the numerical evaluation of the integrals and transforms
appearing in M&M (22) and (52). The procedure is briefly
described as follows; the topographic profile is represented
by an array of 2K ( k = 1, 2, 3,...) evenly spaced points.
(Evenly spaced points are required for the calculation of
the FFT.) The FFT values of the data points and their
squares are then computed. The results are inserted into
M&M(22) and (52) and the inverse FFT of these

quantities are calculated. G,, can now be computed over

representation of Syy is obtained.

the grid of x and y values. Approximate solutions of the
derivatives appearing in M&M (23) and (54) for the shear

stress component, Gyy, can be obtained by use of a second

order Taylor series expansion performed on the data points
representing the topographic profile. Solutions derived by
the above methods have been compared with the analytical
solutions for an example given in McTigue and Mei [1981,
Figure 4] and show excellent agreement. A computer

PANIAN AND PILANT: FORELAND THRUST PROPAGATION

program that computes these stress components as well as
other stress related quantities will be the subject of a
forthcoming paper.

STRESS DISTRIBUTION AND FAULTING

The analysis of stress in an elastic, homogeneous body
is well known [e.g., Jaeger and Cook, 1976]. Now that the
stress components can be computed at any point utilizing
the numerical methods described above, it is a simple
procedure to calculate the remaining relevant stress
quantities to obtain a complete representation of the stress
field. The principal stress axes are the two mutually
perpendicular directions across which the shear stresses
vanish. The principal stress magnitudes are given by

12
vl 2 e
o, = 2(°xx+0yy)+[°xy + 7y ny)

i O
1 28! 2
= & at, =
> (Gxx+cyy) [ny T ny) }

Here we use the convention that compressive stresses are
negative and tensile stresses positive. (This is opposite
that commonly used in geologic analyses, but the same as
used by McTigue and Mei [1981].) Thus, o3 is the
maximum compressive stress and G the least compressive

stress. The principal stress directions are given by

20
metel X Yo )

G . —O
xx Yy

tan 20 =

where 0 is the counter-clockwise angle that they make
with the positive x-axis. The maximum shear stress, or
stress difference, at any point is
1/2
2 1 2 Gy - O3
T = [ny+ 2 (cxx+ cyy) } =_2_ 3)

Faulting is more likely to occur first in regions where 7T
attains its highest values since material bodies fail in shear
rather than in compressive collapse. With the introduction
of internal friction, this highest value is somewhat greater

than T ;; given by the Mohr-Coulomb fracture criterion:
L=t cntand) 4)
where T(y and ¢ are properties of the material. It has long

been known empirically that failure occurs on planes
oriented at approximately 300 to the maximum
compressive stress direction [e.g., Hubbert, 1951]. This
corresponds to an angle of internal friction, ¢, of 300
which can be seen graphically from the failure condition of
the Mohr diagram in Figure 4. For generality, we have not
assumed and particular material strength.

STRESS DISTRIBUTIONS FOR FORELAND THRUST
SHEETS

Several hypothetical profiles representing the
topography of an advancing thrust sheet are presented in

Figures 5a-c. They are based on previously published
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Fig. 4. Mohr-Coulomb conditions for failure. With increasing stress
levels, the circle expands until fracture occurs just as it becomes tangent
to the critical line given by equation (4) of the text.
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examples [see Elliott, 1976b; Johnson, 1981; Willemin,
1984]. The three profiles vary in their degree of slope,
especially in the steepness at the toe. The stress
components were calculated over a grid of evenly spaced
points within the profiles. From these values, contours of
T, the maximum shear stress, were plotted. In Figures Sa
through 5c, regional compression was applied while in
Figure 5d there was no horizontal compression. (The
topographic profile in Figure 5d was the same as in Figure
S5c. The effects were similar for the other two profiles and
so are not presented.) The amount of horizontal
compression is measured by the ratio of regional
compression to the maximum vertical compression due to
material between the reference level (y = 0) and the
maximum topographic height, H, and is expressed by R =
o/pgH. This ratio, R, is -0.5 in Figures 5a-c, and zero in
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Fig. 5 (a)-(d). Stress profile beneath a foreland thrust sheet. Solid lines represent contours of maximum shear stress 7,
broken lines represent potential fracture trajectories, and the dashed line is where the horizontal and vertical stresses are
equal. Dipping contours of shear stress represent a ridge of increased shear stress (above the dashed line) while rising
contours below the line also represent increased shear stress. Basal slope of: the thrust sheet toe increases from Figure 5a
to Figure 5c. The factor R = (0../pgH ) = -0.5 represents a level of regional stress in which the horizontal compression is

1/2 the gravitational compression due to ridge topography. (d) Same as Figure Sc except R = 0, i.e., there is no regional

compression.
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Figure 5d. (The choice of -0.5 is suggested by Elliot
[1976a, p.956)]. The effect of adding horizontal
compression is to increase the shear stress values near the
surface and to decrease them at depth.

In all examples, a minimum of 7 is located in the region
where Oyy becomes equal to Gy, (see (3)) and shown as the
dashed line in Figures 5a-d. Where there is an applied
regional stress, there is a very marked increase in T beneath
the toe. When there is no regional stress, Figure 5d, this
increase still occurs but is greatly reduced. This region of
increased stress is very important and will be discussed

further on.
Broken lines represent the predicted surfaces of shear

fracture.
direction where a = +[n/2 - /2]. For ¢ = 300, a = 300.
The o3 direction is given by (2). These potential fracture

These are oriented at an angle, o, to the 03

trajectories were plotted using a bicubic spline
interpolation over the grid of predicted shear fracture
orientations. Note that the Mohr-Coulomb theory predicts
a conjugate set of fracture planes with no preference across
which plane fracture will eventually occur. We chose to
depict only that set which most closely resembles the
faulting observed in foreland fold-and-thrust belts.

Beneath the surface slope, there are two regions where
these surfaces assume a horizontal attitude. The first is to
the right of the figure (and is of no importance to our
thesis) while the second is below the toe of the thrust and
within the zone of increased maximum shear stress. To the
left of this zone the potential fracture surfaces curve upward
in the same manner as if there were no topography.

These potential shear fracture planes clearly bear a
resemblance to the fault planes in Figure 1. We feel these
similarities are not merely fortuitous, but that the surface
slope at the leading edge of a thrust sheet significantly
influences the stress distribution and hence faulting. Here
one of the drawbacks of employing a homogeneous medium
is encountered. Stated above, one of the relevant
characteristics of foreland thrusting is the horizontal nature
of the faulting parallel to bedding in weak layers or in
zones where the pore pressure is significantly high
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[Hubbert and Rubey, 1959] and the imbricate or ramp
faulting across stronger, more competent layers. Therefore,
We make the assumption that there exists a relatively weak
layer of small thickness in an otherwise homogeneous
section. This should not seriously affect the stress system
shown in Figures 5a-d which are for a homogeneous body.
In a system affected by increasing regional compression,
the region of horizontal potential shear fracture will
eventually descend to a level coinciding with this plane of
weakness. This combination of a weak layer, the
horizontal attitude of potential shear fractures, and the
increase of T beneath the toe, should initiate faulting (see
Figure 6). Once it occurs, faulting can be sustained as a
consequence of the stress concentrating abilities of the
crack edge representing the laterally propagating thrust
fracture [Elliott, 1976b; Gallagher and Rizer, 1977].

The zone of high T beneath the toe plus the stress
concentration at the tip of the propagating thrust create the
stresses necessary for fracture in the stronger rock above.
Also, Bombolakis [1981] has shown in a quantative
analysis involving anisotropic layering, that as part of a
wedge shaped thrust belt slips forward, a strain
concentration is produced at the front of the growing
thrust. A frontal ramp then develops by shear fracturing.
Thus, the thrust can propagate upward and beyond the
mountain front as visualized by Elliott [1976a; 1980].
Figure 6 schematically illustrates this scenario.

From the preceeding discussion, we can now provide a
mechanism for foreland thrust propagation. It has been
suggested that movement along thrusts take place in a
'stick-slip' type of movement [Gretener, 1972;
Bombolakis, 1986]. As the propagating fault fracture
moves forward from the toe, motion of the thrust sheet is
possible. There comes a point when the thrust becomes
locked; perhaps due to folding above the fault or possibly
the propagating thrust encounters an area where the weak
layer locally strengthens or has a lower pore pressue.
(Also, remember that with the initiation of faulting, there
is an associated stress drop; movement may cease simply
because there is now not enough compression to sustain it
(see Figure 7)). There will be a new build-up of stress on
the temporaily locked advancing sheet until the conditions

zone of high
maximum shear stress

initial site of fracture

present fault

/
basal thrust

Fig. 6. Schematic illustration of the onset of faulting. Faulting takes place when the region of high maximum shear
stress, weakened rock zone (decollement), and horizontal potential fracture trajectory coincide. Heavy lines represent
existing faults and broken lines future faults. The dotted arrow shows sense of fracture propagation of the new fault.
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TIME ——
Fig. 7. Time sequence of stick-slip movement of thrusting as a consequence of stress variation through time. The upper
curve represents a steadily increasing level of regional stress which is suddenly reduced as a new thrust occurs. While the
regional stress is still at low levels (steadily increasing, however) healing is taking place along the upward ramp,
strengthening it so that the weakest rocks remain in the decollement zone. As a critical regional stress level is reached,
fracture occurs at a new point beneath the toe of the thrust sheet. Dashed lines represent future faults.

described above are encountered anew. The process is
repeated as long as there exists a strong enough 'push’ from
the hinterland. The sequential nature of foreland thrust
propagation can be visualized as a consequence of a
migrating toe (see Figures 8a-b). The 'surfrider' analogy of
Haarman as interpreted by Elliott [1976a] is therefore
appropriate. The advancing surface slope of a thrust sheet
('the wave') drives thrusts (‘surfboards') ahead of it as a
consequence of the stress concentrating abilities of the
advancing toe region of the thrust sheet.

Limitations of the model

Both the approximate algorithm and its numerical
implementation can be used only when the slopes are
small. (Active thrusting in the Transverse Ranges of
Southern California has maximum slopes on the order of
200. These would make severe demands on the first order
approximation. However, the time sequence we propose
would have new thrusting taking place after a period of
time (healing) in which such steep scarps would be reduced
by erosion. One can only guess what they would be, but
reductions to 1/3 or 1/4 of that value do not seem
unreasonable. These reduced slopes of 5 to 7 degrees are
more in line with the requirements of the approximate
algorithm.) On the other hand, this implementation has a
beneficial result for the numerical work in that the discrete
samples will never have to represent a steep slope.

Another difficulty is clearly evident using the McTigue
and Mei [1981] algorithm; their analysis assumes a
homogeneous, elastic solid and neglects the finite
thickness of the elastic lithosphere. This will result in an
error in the stress field at depth. However, for
topographies with a typical length scale comparable to or
less than this thickness, the needed correction should be
insignificant [McTigue and Mei, 1981, p. 9269]. Thus in
this study, with horizontal length scales on the order of
tens of kilometers, this omission is inconsequent.

In assuming a homogeneous elastic solid, the presence of

anisotropic strata and the existence of any previous
faulting or deformation is obviously ignored.
Incorporating such inhomogeneities would present
formidable obstacles toward a final solution. Neverless,
the previous simplified analysis yields some important
insights concerning foreland thrusting.

CONCLUSIONS

Two important results have been obtained in the
preceding discussion. The first is that a numerical
implementation has been devised for the McTigue and Mei
[1981] algorithm allowing its use in more general
applications. That is, one can now include arbitrarily
specified topography in the determination of gravity- and
tectonic-induced stresses. Secondly, we have found a
plausible explanation for the sequential nature of foreland
thrusting.

The numerical algorithm given here eliminates the
necessity of employing only those topographic models
from which analytical results may be derived. Such models
are generally described by simple polynomials and
trigonometric functions and thus are limited in the
topographic structures they may represent. The numerical
algorithm is subject to no such difficulties, being limited
only by the fundamental requirement that the topographic
slope is small.

Secondly, it has previously been recognized that the
topography developed during thrusting significantly
modifies the stress field [Elliott, 1976b; Willemin, 1984].
With the aid of this numerical algorithm, we have computed
the stress fields for hypothetical topographic profiles
produced by an advancing thrust sheet. These allow
significant insights can be made as to the sequential nature
of foreland thrusting. Summarizing:

1.Thrust faulting is initiated beneath the toe of an
advancing thrust sheet as a result of high T concentrations
and the horizontal sense of potential shear fracturing
located at depth.
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upper glide horizon
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Fig. 8. (a) Schematic representation of foreland thrust propagation in the development of an imbricate fan. (b) Schematic
representation of foreland thrust propagation in the development of a duplex.

2 .Individual thrusts propagate towards the foreland, ahead
of the advancing thrust sheet, due to the migrating toe of
the thrust sheet.

3.The formation of entire thrust systems can be
visualized in terms of the 'surfrider' analogy; thrusts
develop progressively ahead of preceeding ones, toward the
foreland, as the toe of the thrust sheet advances.

4 .The shear stresses built up by gravitation are much
smaller than those developed by a concentration of
regional compression. Consequently, it would appear that
regional compression must be the primary factor in the
formation of a thrust system.
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